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LElTER TO THE EDITOR 

Path integral formalism for Osp( 1/2, R )  coherent states 
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non-compact supergroup Osp(lj2, R )  is introduced. An expression for the transition 
amplitude connecting two Osp( 112, R )  coherent states is constructed, and the correspond- 
ing canonical equations of motion derived. A set of generalized Poisson brackets is 
introduced and intemreted. 

" .̂L -^.L: -.---- 1- r l l  ^_-I "-L ^.^.^^ r l  -1 L I _I .__^ I^^ :...LA -... A.. 
OUUl pPUL U l L C g I P h J  L t J  all" C U I I C L G I I I  J L P L F 3  L L ,  JJ I l d V C :  pLPyCU L U a J U L  lU lCD 111 LllF JlUUy 

of quantum mechanical systems, particularly for establishing the correspondence 
between classical and quantum physics. coherent states for the group SU(2) were 
introduced by Radcliffe [4] later, the construction of coherent states was generalized 
to arbitrary Lie groups by Perelomov [5] and Gilmore [6]. More recently, generalized 
coherent states for supergroups have begun to be investigated [7,8]. 

The use of coherent states to provide an altemative method of obtaining the phase 
space path integral, and hence Hamilton's equations of motion, was pioneered by 
Klauder and others [9]. This technique has recently been extended to include a 
formulation in terms of generalized coherent states for SU(1.1) [lo], SU(2) [ l l ]  and 
the n-dimensional Euclidean group [ 121. The coherent state path integral formalism 
has also found application in the theoretical study of Berry's geometrical phase [ 131. 
Essential in the formulation of any path integral formalism is the construction of an 
invariant measure of integration for the coherent states. In [7], we presented a general 
method for constructing this invariant measure for the coherent states of the non- 
compact supergroups Osp(l/ZN, R) and studied the representations of Osp(1/2, R). 
In the past few years, there have been hints of physically realized supersymmetry in 
nuclear [14], atomic [I51 and many-body physics [15]. It is therefore a worthwhile 
effort to study path integral for supergroups. 

In this letter, we wish to extend the previous path integral formalism of Sp(2, R )  
coherent states studied in [lo] to the non-compact supergroup Osp(1/2, R ) ,  which 
contains Sp(2, R )  as a subgroup. We introduce the non-compact superalgebra 
Osp( 1/2, R )  next, where we also present a brief summary of the results for the associated 
coherent states. Later, we present the path integral formulation of the transition 
amplitude between two Osp(1/2, R) coherent states and derive the classical equations 
of motion for the system. Finally we summarize our work and discuss future extensions 
and applications of our results. 

In  our notation, the non-compact superalgebra Osp(M/ZN, R) contains the sub- 
algebra O ( M )  that acts on the fermionic space and the subalgebra Sp(2N. R )  which 
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acts on the bosonic space. The Osp(1/2, r )  supergroup has five infinitesimal generators 
[I71 whose defining commutation and anti-commutation relations are given by the 
following: 

[KO, K,1= * K ,  [ K , ,  K_]=-2K0 [KO, v&l=*tv, ( l a )  

The superalgebra Osp(1/2, R )  clearly contains an subalgebra Sp(2, R )  spanned by K ,  
and KO. 

We consider only the positive discrete series representations of Osp(1/2, R), so the 
coherent states are constructed as 

la, 0 >  =Nexp(aK++0V+)IT k =  7, m =  k )  (2) 
where a is a complex variable and 0 is a Grassmann variah!e. !n (?), !he qczn!gm 
numbers T and k label the irreducible representations of Osp(1/2, R )  and Sp(2, R )  
respectively and m labels the eigenvalue of K O .  The normalization constant K ensures 
that the coherent state is normalized to unity and is given by 

where 6 and a* are the complex conjugates of 0 and a. Similarly the overlap between 
two Osp(1/2, R )  coherent states can be written 

In [7], we Constructed the measure of integration and decomposition of unity for 
Osp(1/2, R )  coherent states. We found 

where 

In the above integrations over Grassmann variables, we fix our normalization as 

/ d g d 0 ( l , &  0 ) = 0  1 d 6 d 0 0 e =  I .  (6) 

It is easy to verify that the Osp(1/2, R )  coherent states so constructed are ‘closest to 
classical’ in the sense of Perelomov [SI. 

Consider a Hamiltonian, H, that is constructed from the generators of the super- 
group. The propagator from the coherent state at time to the coherent state at time 
I, is given by 

y= ~ a , ,  ol , t l ;  az, 02, t2)= H(il-fz)} I a,, e,). (7) 
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In principle, we should use a time-ordered exponential to allow for the Hamiltonian 
being time dependent; however, the modifications needed are straightforward and are 
omitted here. As usual, we divide the time interval AT= f 1 - f 2  into n equal parts. 
E = A T / n ,  and finally take the limit as n+m. Thus we find that 

The identity operator (equation ( s a ) )  is inserted into each of the equal time internals, 
leading to the expression 

, , -  

e k l H l a k - t ,  O k - ~ ) / ( m k ,  o k l a k - l ,  o k - l ) ] ,  (9) 
k 

Here the endpoints are f. = 1, and f, = f , .  
The term in the curly bracket in (9) is the simplest to handle, and to first order in 

We now calculate the product term II (nk, Bklak-, , e*-,). The expression for the overlap 
of the coherent states (4) is inserted into this expression and we find 

- F it .._I.. p i n  he I" r e r r l i r d  .~~ .---- hu -, t h e  exponent$ I. nf !he erpecta!i~fi vz!ue af !he E&!!QE~z~. 

n ( a k ,  e k l a k - 3 ,  e k - t )  
k 

where the prime denote time differentiation and Pah = ah - a x - l ,  ABk = 0, - 8k-1 and 
we have neglected terms second order in A. 

The transition amplitude can then be written in the following formal manner: 

T= B+(ct(O,@(t))exp -9 ( 1 l a )  I (A 1 
I 

with 

9= ~ ( u ( f ) , a * ( r ) , a ' ( r ) , a ' * ( f ) , e ( r ) ,  $ ( f ) , O ' ( f ) ,  # ( f ) ,  f)df.  ( I l b )  
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S' is the action and the quantity 2' is identified as the Lagrangian. The explicit form 
of the Lagrangian is 

with 

%=(a, BJH)a, e). (126) 

To arrive at the classical limit, we consider the case Y'<< f i .  The dominant contribu- 
tion to the transition amplitude then comes from where the variation of the action 
vanishes. Setting W = O ,  we find the following system of equations: 

d J2' J 2  d J 2  J2' 
dt JO' J9 
_ _ - _ =  

d t  Je' J 6 - O '  
Inserting the expression for the Lagrangian into (13) ,  we obtain the equations of 

motion for the system: 

x},-&*w{F, aF ( 1 4 ~ )  

LI'=B{a, X},+fa6F{0,7f}, (146) 

where 

In (14), we have introduced the Poisson brackets for complex and Grassmann 
variables: 

JA as J A  J B  
Ja* aa J a  Ja* 

JA aB A; B; 
J O  as J O  J O  

{A, B ) F  = 1- ---= -1. 
Finally, we note that by calculating the exterior derivative of the differential form 

of the portion of the Lagrangian containing the time derivatives, the equation of motion 
have the form expected from [lo, 111. 

In this letter we have introduced a path integral formalism for the non-compact 
supergroup Osp(lf2, R). The resulting equations of motion contain two Poisson 
brackets-one for the complex variable a and one for the Grassmann variable 8. The 
form of the equations of motion follows from the fact that the coherent states were 
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constructed from a supergroup. The existence of the fermion (boson) Poisson bracket 
in the equations of motion for the bosonic (fermionic) variables is a direct consequence 
of the supergroup structure. 

We have not presented an example here, as we have yet to find a system that 
exhibits an Osp(1/2, R )  symmetry. Work has begun on a coherent state formalism for 
Osp(Z/Z, R ) ,  where a physically relevant system exists [ 141. Results for this will be 
presented elsewhere. 
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